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Abstract

Computer—based models of medical decision making account for a large proportion

of clinical computing efforts. This article reviews representative examples

— from each of several major medical computing paradigms. These include (1)

clinical algorithms, (2) clinical databanks that include analytic functions , (3)

mathematical models of physical processes, (4) pattern recognition, (5) Bayesian

statistics, (6) decision analysis , and (7) symbolic reasoniflg or artificial

intelligence. Because the techniques used in the various systems cannot be

examined exhaustively , the case studies in each category are used as a basis for

studying general strengths and limitations. It is noted that no one method is

best for all applications. However, emphasis is given to the limitations of

early work that have made artificial intelligence techniques and knowledge

engineering research particularly attractive. We stress that considerable basic

research in medical computing remains to be done and that powerful new

approaches may lie in the melding of two or more established techniques.
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Page 1

KNOWLEDGE ENGINEERING FOR MED ICAL DECISION MAKING :
A Review of Computer—Based Clinical DecIsion Aids

1 Introduction

As early as the 1950’s, physicians and computer scientists recognized

that computers could assist with clinical decision making [63] and began to

analyze medical diagnosis with a view to the potential role of automated

decision aids in that domain [61:!. Since that time a variety of techniques have

been applied , accounting for at least 800 references in the clinical and

computing literature (112]. In this article we review several medical decision

making paradigms and discuss some issues that account for both the multiplicity

of approaches and the limited clinical success of most systems developed to

date. Because other authors have reviewed computer—aided diagnosis

[47],(92],(114] and the potential impact of computers in medical care [93], our

emphasis here is somewhat different. We will focus on the symbolic

representation and use of knowledge, termed “knowledge engineering ,” and the

inadequacies of data—intensive techniques which have led to the exploration of

novel symbolic reasoning approaches during the last decade.

1. 1 Reasons For Attempting Computer—Aid ed Medical Decision Making
Because of the accelerated growth in medical knowledge, physicians have

tended to specialize and to become more dependent upon assistance from other

experts when a patient presents with a complex problem outside one’s own area of
expertise. The primary care physician who first sees a patient has thousands of

tests available with a wide range of costs (both fiscal and physical) and

potential benefits (i.e., arrival at a correct diagnosis or optimal therapeutic

management). Even the experts in a specialized field may reach very different

decisions regarding the management of a specific case (131]. Diagnoses that are

made, and upon which therapeutic decisions are based , have been shown to vary

widely irs their accuracy (261 ,[83] ,(89]. Furthermore , medical students usually

learn about decision making in an unstructured way, largely through observation

and by emulating the thought processes they~.. perceive to be used by their

clinical mentors [53].

• Thus the motivations for attempts to understand and automate the process
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1 Introduction Page 2

of clinical decision making have been numerous (114). They are directed both at

diagnostic models and at assisting with patient management decisions . Among the

reasons for introducing computers into such work are the following :

(1) To improve the accuracy of clinical diagnosis through approaches that are

systematic , complete , and able to integrate data from diverse sources;

(2) To improve the reliability of clinical decisions by avoiding unwarranted

influences of similar but not identical cases (a common source of bias among

physicians), and by making the criteria for decisions explicit , and hence

reproduc Ible;

(3) To improve the cost efficiency of tests and therapies by balancing the

expenses of time, inconvenience , or funds against benefits and risks of

definitive actions ;

(4) To improve our understanding of the structure of medical knowledge, with the

associated development of techniques for identifying inconsistencies and

inadequacies in that knowledge; and

(5) To improve our understanding of clinical decision making, in order to

improve medical teaching and to make computer programs more effective and

easier to understand .

1.2 The Distinction Between Data And Knowledge

The models on wh ich computer systems base their clinical advice range

from data—intensive to knowledge—Intensive approaches. There are at least four

types of knowledge that may be distinguished from pure statistical data:

(1) knowledge derived from data analysis (largely numerical);

(2) judgmental or subjective knowledge;

(3) scientific or theoretical knowledge ; and

(4) high—level strategi knowledge or “self—knowledge.”

If there is a chronology to the field over the last 20 years, it is that

there has been progressively less dependence on “pure” observational data and

more emphasis on higher—level symbolic knowledge inferred from primary data. We

include with domain knowledge the category of “judgmental knowledge” which

reflects the experience and opinions of an expert regarding an issue about which

the formal data may be fragmentary or nonexistent. Since many decisions made in

clinical medicine depend upon this kind of judgmental expertise , it is not

surprising that investigators should begin to look for ways to capture and use

• V M ~~~~~~~~~~~~~~~~~~~~~~~~~F~~~~~m~~~~ ~~~~~ -~ •
~~~



1 Introduction Page 3

the knowledge of experts in decision making programs. Another reason to move

away from purely data—intensive programs is that in medicine the primary data

available to decision makers are far from objective [201,[57]. They include

subjective reports from patients , and error—prone observations [27]. Also , the

terminology used in the reports is not standardized [7] and the classifications

often overlap. Thus decision making aids must be knowledgeable about the

unreliability of the data [57) as well as the uncertainty of the inference.

For example, data—intens ive programs include medical record systems which
accumulate large databanks to assist wit-h decision making . There is little

knowledge per se in the databank , but there are large amounts of data which can
help with decisions and be analyzed to provide new knowledge. A program that

retrieves a patient’s record for review, or even one that identifies and

retrieves the records of similar patients (matching some set of descriptors), is

performing a data management task with little reasoning involved [36],(86].

Although there is statistical “knowledge” contained in the conditional

probabilities generated from such a databank and utIlized for Bayesian analysis ,

it is all numeric . At the other extreme are systems that encode and use the kind

of expert knowledge which cannot be easily gleaned from databanks or literature

reviews [75J,[102]. Systems that model human reasoning or emphasize education of

users tend to fall towards this end of the data—knowledge continuum.

In addition to judgmental and statistical knowledge, there are other

forms of information that can play an important role in computer—based clinical

decision aids. For example, underlying scientific theories and relationships

are often ignored by diagnostic programs but provide the foundation for

decisions made by human experts. Consider , for example, the potential utility

of techniques that could effectively represent and use the basic knowledge of

biochemistry, biophysics, or detailed human physiology. Biomedical modeling

research offers some mathematical techniques for encoding such knowledge in

certain domains , but symbolic approaches and clinically useful applications are

still largely unrealized .

Finally,  there is another kind of k~iowledge used by human decision

makers — an understanding of reasoning processes and strategies themselves .

This kind of “high—level” or “meta—level” knowledge , if incorporated into

computer programs , may not only heighten their decision making performance but

also augment their acceptability to users by making them appear more aware of

their own power, strategies , and limitations.

• -~~~~~ ~~~~~~~~~~~~~~~~~ • - , •
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1 Introduction Page 4

We use the term “knowledge engineering ,” then, to refer to computer—based

symbolic reasoning issues such as knowledge representation , acquisition .

explanation , and “self—awareness” or self—modification (19]. It is along these

dimensions that knowledge—based programs differ most sharply from conventional

calculations. For example, they can solve problems by pursuing a line of

reasoning; the individual inference steps and the whole chain of reasoning may

also form the basis for explanations of decisions. A major concern in knowledge

engineering is clear separation of the medical knowledge in a program from the

inference mechanism that applies that knowledge to the data of individual cases.

One goal of this paper is to identify , in the strengths and weaknesses of

earlier work, those issues which have motivated several current researchers to

investigate the automation of clinical decision aids through knowledge

engineering .

1.3 Parameters For Assessing Work In The Field

Barriers to successful implementation of computer—based diagnostic

systems have been analyzed on several occasions [71 , [23] , [106] and need not be

reviewed here . However, in assessing programs it is pertinent to examine

several parameters that affect the success and scope of a particular system in

light of its intended users and application. Unfortunately, the medical

computing literature has few descriptions of systems for which all the following

issues can be assessed.

(1) How accurate is the program? 1

(2) What is the nature of the knowledge in the system and how is it generated or

acquired?

(3) How is the clinical knowledge represented , and how does it facilitate the

performance goals of the system described?

(4) How are knowledge and clinical data used and how does this impact on system

performance?

(5) Is the system accepted by the users for whom it is intended? Is the

interface with the user adequate? Does the system function outside of a

research setting and is it suitable for dissemination?

(6) What are the limitations of the approach?
tAlthough this is important it is not the only measure of clinical

effectiveness. For example, the effects on morbidity, mortality , and length of
hospital stay may also be important parameters. As we shall show~ few systems
have reached a stage of implementation where these parameters could be assessed.
Moreover because of the complexity of the interacting influences that affect
the usuai measures of outcome, it may be difficult ever to define the marginal
benefit of such systems.
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1 Introduction Page 5

An issue we have chosen not to address is the cost of a system , including

the size of the required computing resource. Not only is information on this

question scanty for most of the programs , but expenses generated in a research

and development environment do not realistically reflect the costs one expects

from a system once it is operating for service use.

1.4 Overview Of This Paper

An exhaustive review of computer—aided diagnosis will not be attempted in

light of the vastness of the field , and we have therefore chosen to present the

prominent paradigms by discussing representative examples. In separate sections

we give an overview, example, and discussion of (1) clinical algorithms , (2)

databank analysis, (3) mathematical models , (4) pattern recognition , (5)

Bayesian analysis, (6) decision theory , and (7) symbolic reasoning. We close

each section by identifying the range of applications for which the approach

appears most appropriate , the limitations of the approach , and the ways in which

symbolic reasoning techniques may strengthen the approach by improving its

performance or acceptability.

The seven principal examples we have selected are not necessarily the

best nor the most successful; however, they illustrate the issues we wish to

discuss within the major paradigms. We have also referenced other closely

related systems, so the bibliography should guide the reader to more details on

particular topics. Any attempt to categorize programs in this way is inherently

fraught with problems irs that several systems draw upon more than one parad igm .

Thus we have occasionally felt obligated to simplify a topic for clarity in

light of the overall purposes of this review and the limitations of the space

available to us.

Because we are only interested here in decision making tools for use by

clinicians, we have chosen to disregard systems that are designed primarily for

use by researchers (393,(50], (65J,(90J. Furthermore , we shall not discuss

biomedical engineering applications of computers , such as advanced automated

instrumentation techniques (e.g., computerized tomography2) or signal processing

techniques (e.g., programs for EI~ analysis (79] or patient monitoring (116]).

Because they do not explicitly make inferences, we have also omitted programs

designed largely for data storage and retrieval with the actual analysis and

decision making left to the clinician (36],(58],(1243. We have also chosen to

~See Kak’s article in this issue of the PROCEEDINGS.
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1 Int roduct ion Page 6

discuss working computer programs rather than unimplemented theories or early

reports of work in pr .~ress.

2 Clinical Algorithms and Automation

2.1 Overview

Clinical algorithms , or protocols , are flowcharts to which a

diagnostic ian or therapist can refer when deciding how to manage a patient with

a specific clinical problem [97). Such protocols usually allow decisions to be

made by carefully following the simple branching logic , although there are

built—in safeguards whereby referrals to experts are made if a patient is

unusually complex. The value of a protocol depends upon the infrequency with

which such referrals are made, so it is important to design algorithms that

reflect an appropriate balance between safety and efficiency . In general,

algorithms have been designed by expert physicians for use by paramedical

personnel who have been entrusted with the performance of certain routine

clinical—care tasks3. The methodology has been developed in part because of a

desire to define basic medical logic concisely so that detailed training in

pathophysiology would not be necessary for ancillary practitioners. Experience

has shown that intelligent high school graduates , selected in large part because

of poise and warmth of personality, can provide excellent care guided by

protocols after only four to eight weeks of training. This care has been shown

to be equivalent to that given by physicians for the same limited problems , and

to be accepted by physicians and patients alike for such diverse clinical

situations as diabetes management [561 , (66] , pharyngitis [38], headache [371

and other disease categories (1041,[l1O].

The role of the computer in such applications has been limited , however.

In fact , several groups initially experimented with computer representation of

the algorithms but have since abandoned the efforts and resorted to prepared

paper forms (56],(110]. In these cases the computer had originally guided the

physician assistant’s collection of data and had specified precisely what

decisions should be made or actions taken , in accordance with the clinical

algorithm. However, since the algorithmic logic is generally simple, and can

3Clinical algorithms have also been prepared for use by physicians
themselves but Grimm has found that they are generally less well—accepted by
doctors (3~]. He showed, however , that physician performance could improve when
protocols were used in certain settings.
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2 Clinical Algorithms and Automation Page 7

often be represented on a single sheet of paper , the advantages of an automated

approach over a manual system have not been clearly demonstrated . In one study

Vicker ? shoved that supervising physicians could detect no significant

difference between the performance of physicians’ assistants using automated

versus manual systems, although the computer system entirely eliminated errors

in data collection (since it demanded all relevant data at the appropriate time)

(110]. Furthermore , the computer could not , of course , decide whether the actual

observations entered by the physicians’ assistant were correct; yet this kind of

inaccuracy was one of the most common reasons that supervisors found an

assistant’s performance unsatisfactory.

There are two other ways in which the computer has been used in the

setting of clinical algorithms. First , mathematical techniques have been used

to analyze signs and symptoms of diseases and thereby to identify those that

should most appropriat~dy be referenced in corresponding clinical algorithms

[30],[55],(113]. The process for distilling expert knowledge in the form of a

clinical algorithm can be an arduous and imperfect one (97]; formal techniques

to assist with this task may prove to be very valuable.

Some researchers in this area also use computers to assist with clinical

care audit by comparing actual actions taken by a physicians’ assistant with

those recommended by the algorithm itself. Sox et al. (1041 have described a

system in which the assistant’s checklist for a patient encounter was sent to a

central computer and analyzed for evidence of deviation from the accepted

protocol. Computer—generated reports then served as feedback to the physicians’

assistant and to the supervising physician.

2.2 Example

We have selected for discussion a project that differs from those

previously cited in that (1) computer techniques are still being used , and (2)

the clinical algorithms are designed for use by primary car-c physicians

themselves. This is the cancer chemotherapy system developed in Alabama by

Mesel et al. (70]. The algorithms were developed to allow private

practitioners , at a distance from the regional tertiary—care center , to manage

the complex chemotherapy for their cancer patients without routinely referring

them to the central oncologists. Mesei. et al. have described a “consultant—

extender system” that enables the primary physician to treat patients with

Hodgkin’s Disease under the supervision of a regional specialist. Five

_
p 

~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~
: - -  -

~~~ 

•- - —— - ,~~.- -



2 Clinical Algorithms and Automation Page 8

oncologists developed a care protocol for the treatment of Hodgkin’s Disease,

and this algorithm was placed on—line. Once patients had agreed to participate

in the study, their private physicians would prepare “encounter forms” at the

time of each office visit. These forms would document pertinent interval

history , physical findings, and lab data , as well as chemotherapy administered .

The form would then be sent to the regional center where it was analyzed by the

computer and a customized clinical algorithm was produced to assist the private

physician with the management of that patient during the next appointment. Thus

the computer program would take into account the ways in which the individual

pa tient’s disease might progress or improve and would prepare an appropriate

clinical algorithm . This protocol was sent back to the physician in time for it

to be available at the next office visit. The private practitioner was

encouraged to call the regional specialist directly if the protocol seemed in

some way inadequate or additional questions arose. The authors present data

suggesting that their system was well—accepted by physicians and patients , and

that excellent care was delivered4. Retrospective review of cases that were

treated at the referral center itself, but without the use of the protocels ,

showed a 16% rate of variance from the management guidelines specified in the

algorithms ; there was no such variance when the protocols were followed . Thus

algorithms may be effective tools for the administration of complex specialized

therapy in circumstances such as those described5.

2.3 Discussion of the Methodology

Although clinical algorithms are among the most widespread and best

accepted of the decision aids described in this article , the simplicity of their

logic makes it clear why the technique cannot be effectively applied in most

medical domains. Decision points in the algorithms are generally binary (i.e. ,

a given sign or symptom is either present or absent), and there tend to be many

circumstances that can arise for which the user is advised to consult the

supervising physician (or specialist). Thus the difficult decision tasks are

left to experts, and there is generally no formal algorithm for managing the

case from that point on. It is precisely the simplicity of the algorithmic

4This is an interesting result in light of Grimm’s experience mentioned
in footnote 3. One possible explanation is that physicians were more accepting
of the algorithmic approach in Mesel’s case because it allowed them to perform
tasks that they would previously not have been able to undertake.

sore recently the Alabama group has reported similar success
implementing a consultant—extender system for adjuvant chemotherapy in breast
carcinoma (1291.
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2 Clinical Algorithms and Automation Page 9

logic, and the safeguard of the supervising expert , which has permitted many

algorithms to be represented on one or two sheets of paper and has obviated the

need for direct computer use in most of the systems. The contributions of

clinical algorithms to the distribution and delivery of health care, to the

training of paramedics , and to quality care audit , have been impressive and

substantial. However , the approach is not suitable for extension to the complex

decision tasks to be discussed in the following sections.

3 Databank Analysis for Prognosis and Therapy Selection

3.1 Overview

Automation of medical record keeping and the development of computer—

based patient databanks have been major research concerns since the earliest

days of medical computing . Most such systems have attempted to avoid direct

interaction between the computer and the physician recording the data , with the

systems of Weed (123],(124 ] and Greenes (36] being notable exceptions. Although

the earliest systems were designed merely as record—keeping devices, there have

been several recent attempts to create programs that could also provide analyses

of the information stored in the computer databank. Some early systems f36),[521

had retrieval modules that identified all patient records matching a Boolean

combination of descriptors ; however, further analyses of these records for

decision making purposes was left to the investigator. Weed has not stressed an

analytical component in his automated problem—oriented record (1241, but others

have developed decision aids which use medical record systems fashioned after

his (103].

The systems for databank analysis all depend on the development of a

complete and accurate medical record system. Once such a system is developed , a

number of additional capabilities can be provided : (1) correlations among

variables can be calculated , (2) prognostic indicators can be measured , and (3)

the response to various therapies can be compared . A physician faced with a

complex management decision can look to such a system for assistance in

identifying patients in the past who had similar clinical problems and can then

see how those patients responded to various therapies. A clinical investigator

keeping the records of his study patients on such a system can use the program’s

statistical ~.~pabilities for data analysis. Hence, although these applications

are inherently data—intensive , the kinds of “knowledge” generated by specialized
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3 Databank Analysis for Prognosis and Therapy Selection Page 10

retrieval and statistical routines can provide valuable assistance for clinical

decision makers. For example , they help avoid the inherent biases of anecdotal

experience , such as occur when an individual practitioner bases decisions

primarily on personal encounters with one or two patients having a rare disease

or complex of symptoms.

There are many excellent programs in this category , one of which is
discussed in some detail in the next section. Several others warrant mention ,

however. The HELP System at the University of Utah (117],[119],[120 ] uses a large

data file on patients in the Latter—Day Saints Hospital. Clinical experts

formulate specialized “HELP sectors” which are collections of logical rules that

define the criteria for a particular medical decision. These sectors are

developed by an interactive process ; the expert proposes important criteria for

a given decision and is provided with actual data regarding that criterion

(based on relevant patients and controls from the computer databank). The

criteria in the sector are thus adjusted by the expert until adequate

discrimination is made to justify using the sector’s logic as a decision tool6.

The sectors are then used for a variety of tasks throughout the hospital.

Another system of interest is that of Feinstein et al. at Yale (211, in

which physicians interact with the system to request assistance in estimating

prognosis and guiding management for patients with lung cancer. Similarly,

Rosati et al. have developed a system at Duke University which uses a large

databank on patients who have undergone coronary arteriography (88]. Ney

patients can be matched against those in the databank to help determine patient

prognosis under a variety of management alternatives.

3.2 Example 
-

One of the most successful projects in this category is the ARAMIS system
of Fries at Stanford University (24]. The approach was designed originally for

use in an outpatient rheumatology clinic , but then broadened to a general

clinical database system, the Time—Oriented Data~ank (TOD) (126]’ ,(127], so that it

could be transferred to clinics in oncology, metabolic disease, cardiology,

endocrinology , and certain pediatric subspecialties. All clinic records are

kept in a tabular format in which a column in a large table indicates a specific

clinic visit and the rows indicate the relevant clinical parameters that are

~This process might be seen as a technique to assist with the formulation
of clinical algorithms as discussed in the previous section. Another approach
using databank analysis for algorithm development is described in (30].

~~~~ ~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —w-. -- —-
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being followed over time. These charts are maintained by the physicians seeing

the patient in clinic , and the new column of data is later transferred to the

computer databank by a transcriptionist; in this way time—oriented data on all

patients are kept current. The defined database (clinical parameters to be

followed) is determined by clinical experts , and in the case of rheumatic

diseases has now been standardized on a national scale (41.].

The information in the databank can be used to create a prose summary of

the patient’s current status , and there are graphical capabilities which can

plot specific parameters for a patient over time (126]. However, it is in the

analysis of stored clinical experience that the system has its greatest

potential utility (25]. In addition to performing search and statistical

functions such as those developed in databank systems for clinical investigation

[501,165], ARANIS offers a prognostic analysis for a new patient when a
management decision is to be made. Using the consultative services of the

Stanford I nunology Division, an individual practitioner may select clinical

indices for his patient that he would like matched against other patients in the

databank. It is imperative that such indices be selected wisely and hence with

expert advice; the Stanford imunologists have found that the best descriptors

for characterizing patients are often different from those that a novice chooses

to use. Based on two to five such descriptors , the computer locates relevant

prior patients and prepares a report outlining their prognosis with respect to a

variety of endpoints (e.g., death , development of renal failure, arthritic

status, pleurisy). Therapy recommendations are also generated on the basis of a

response index that is calculated for the matched patients. A prose case

analysis for the physician’s patient can also be generated ; this readable

document summarizes the relevant data from the databank and explains the basis

for the therapeutic recommendation.

The rheumatologic databank generated under ARAMIS has now been expanded

to involve a national network of imunologists who are accumulating time-

oriented data on their patients. This national project seeks in part to obtain

enough data so that groups of retrieved patients will be sizable , thereby

controlling for some observer variability and making the system’s

recommendations more statistically defensible.

3.3 Discussion of the Methodology

~~~~~~~~~~~~~~~~~~~~~~~
a t 1 y .

is systems have powerful capabilities to offer to the 
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3 Databank Analysis for Prognosis and Therapy Selection Page 12

individual clinical decision maker. Furthermore , medical computing researchers

recognize the potential value of large databanks in supporting many of the other

decision making approaches discussed in subsequent sections. There are

important additional issues regarding databank systems :

(1) Data acquisition remains a major problem. Many systems have avoided direct

— physician—computer interaction but have then been faced with the expense and

errors of transcription. The developers of one well—accepted record system

still express their desire to implement a direct interface with the

physician for these reasons, although they recognize the difficulties

encountered in encouraging direct~use of a computer system by doctors [107].

(2) Analysis of data in the system can be complicated by missing values that

frequently occur, outlying values, and poor reproducib ility of data across

time and among physicians. Conversely, the system can itself be used to

identify questionable values of tests or observations.

(3) The decision aids provided tend to emphasize patient management rather than

diagnosis. Feinstein’s system [21] is only useful for patients with lung

cancer, for example, and the ARM1IS prognostic routines, which are designed

for patient management, assume that the patient’s rheumatologic diagnosis is

already known.

(4) There is no formal correlation between the way expert physicians approach

patient management decisions and the way the programs arrive at

recommendations. Feinstein and Koss felt that the acceptability of their

system would be limited by a purely statistical approach , and they therefore

chose to mimic human reasoning processes to a large extent (59], but their

approach appears to be an exception.

(5) Data storage space requirements can be large since the decision aids of

course require a comprehensive medical record system as a basic component .

Slamecka has distinguished between structured and empirical approaches to

clinical consulting systems (1031 , pointing out that databanks provide a largely

empirical basis for advice whereas structured approaches rely on judgmental

knowledge elicited from the literature or from experts. It is important to

note, however, that judgmental knowledge is itself based on empirical

information. Even an expert’s “intuitions” are based on observations and “data

collection” over years of experience. Thus one might argue that large,

complete , and flexible databanks could form the basis for large amounts of

_____ —ft - - 
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judgmental knowledge that we now have to elicit from other sources. Some

researchers have indicated a desire to experiment with methods for the automatic

generation of medical decision rules from databanks , and one component of the

research on Slamecka’s MARIS system is apparently pointed in that direction

(1033. Indeed, some of the most exciting and practical uses of large databanks

may be found precisely at the interface with those knowledge engineering tasks

that have most confounded researchers in medical symbolic reasoning [5].

4 Mathematical Models of ~~~~~~ Processes

4.1 Overview

Pathophysiologic processes can be well—described by mathematical formulae

in a limited number of clinical problem areas. Such domains have lent

themselves well to the development of computer—based decision aids since the

issues are generally well—defined. The actual techniques used by such programs

tend to reflect the details of the individual applications, the most celebrated

• of which have been in pharmacokinetics (specifically digitalis dosing), acid—

base/electrolyte disorders, and respiratory care (69].

It is important that cooperating experts assist with the definition of

pertinent variables and the mathematical characterization of the relationships

among them. The computer program requests the relevant data, makes the

appropriate computations, and provides a clinical analysis or recommendation for

therapy. Some of the programs have also involved branched—chain logic to guide

decisions about what further data are needed for adequate analysis7.

Programs to assist with digitalis dosing have gradually introduced

broader medical knowledge over the last ten years. The earliest work was

.Jelliffe ’s (48] and was based upon his considerable experience studying the

pharmacokinetics of the cardiac glycosides. His computer program used

mathematical formulations based on parameters such as therapeutic goals (e.g.,

desired predicted blood levels), body weight, renal function , and route of

administration. In one study he showed that computer recommendations reduced

the frequency of adverse digitalis reactions from 35% to 12% (49]. Later ,

logic refers to mechanisms by which portions of a
decision network can be considered or ignored depending upon the data on a given
case . For example, in an acid—base program the anion gap might be calculated
and a branch—point could then determine whether the pathway for analyzing an
elevated anion gap would be required . If the gap were not elevated , that whole
portion of the logic network could be skipped . 
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4 Mathematical Models of Physical Processes Page 14

another group revised the Jelliffe model to permit a feedback loop in which the

digitalis blood levels obtained with initial doses of the drug were considered

in subsequent therapy recommendations [78],(96]. More recently, a third group

in Boston , noting the insensitivity of the first two approaches to the kinds of

nonnumerical observations that experts tend to use in modifying digitalis

therapy , augmented the pharmacokinetic model with a patient—specific model of

clinical status (35]. Running their system in a monitoring mode, in parallel

with actual clinical practice on a cardiology service, they found that each
- patient in the trial in whom toxicity developed had received more digitalis than

would have been recommended by their program.

4.2 Example

Perhaps the best known program in this category is the interactive system

developed at Boston’s Beth Israel Hospital by Bleich. Originally designed as a

program for assessment of acid—base disorders [2], it was later expanded to

consider electrolyte abnormalities as well (31 ,(4]. The knowledge in Bleich’s

program is a distillation of his own expertise regarding acid—base and

electrolyte disorders. The system begins by collecting initial laboratory data

from the physician seeking advice on a patient’s management. Branched—chain

logic is triggered by abnormalities in the initial data so that only the

pertinent sections of the extensive decision pathways created by Bleich are

explored. The approach is therefore similar to the flowcharting techniques used

by the clinical algorithms of Section 2, but it involves more complex

mathematical relationships than algorithms typically do. Essentially all

questions asked by the program are numerical laboratory values or “yes—no”

questions (e.g., “Does the patient have pitting edema?”). Depending upon the

complexity and severity of the case, the program eventually generates an

evaluation note that may vary in length from a few lines to several pages.

Included are suggestions regarding possible causes of the observed abnormalities

and suggestions for correcting them. Literature references are also provided

with the recommendations.

Although the program was made available at several East coast

institutions, few physicians accepted it as an ongoing clinical tool. Bleich

points out that part of the reason for this was the system’s inherent

educational impact ; physicians simply began to anticipate its analysis after

they had used it a few times (33 8.

~~ore recently he has been experimenting with the program operating as a
monitoring system, thereby avoiding direct interaction with the physician.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~w~~~~~ --~~~ ~~~~~~~~ 
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The system’s lack of sustained acceptance by physicians is probably due

to more than its educational impact , however. For example, there is no feedback

in the system; every patient is seen as a new case and the program has no

concept of following a patient’s response to prior therapy . Furthermore , the

program generates differential diagnosis lists but does not pursue specific

etiologies ; this can be particularly bothersome when there are multiple

coexistent disturbances in a patient and the program simply suggests parallel

lists of etiologies without noting or pursuing the possible interrelationships.

Finally, the system is highly individualized in that it contains only the
parameters and relationships that Bleich specifically thought were important to

include in the logic network. Of course human consultants also give

personalized advice which may differ from that obtained from other experts.

However , a group of researchers in Britain [85] who compared Bleich’s program to
four other acid—base/electrolyte systems, found total agreement among the

programs in only 2C% of test cases when these systems were asked to define the

acid—base disturbance and the degree of compensation present. Their analysis

does no-: reveal which of the programs reached the correct decision, however , and

it may be that the results are more an indictment of the other four programs

than a valid criticism of the advice from Bleich’s acid—base component.

4.3 Discussion of the Methodologies

The programs mentioned in this section differ from one another in several

respects, and each tends to overlap with other paradigms we have discussed .

Bleich’s program, for example, is essentially a complicated clinical algorithm

interfaced with mathematical formulations of electrolyte and acid—base

pathophysiology. As such it suffers from the weaknesses of all algorithmic

approaches, most importantly its highly structured and inflexible logic which is

unable to contend with circumstances not specifically anticipated in the

algorithm. The digitalis dosing programs all draw on mathematical techniques

from the field of biomedical modeling [40], but have recently shown more

reliance on methods from other areas as well, In particular these have included

symbolic reasoning methods that allow clinical expertise to be encoded and used

in conjunction with mathematical techniques (35]. The Boston group that

developed this most recent digitalis program is interested in similarly

developing an acid—base/electrolyte system so that judgmental knowledge of

experts can be interfaced with the mathematical models of pathophysiology9.

~This project was described by Prof. Peter Szolovits, of MIT’s clinical
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There is also a large research community of mathematicians who attempt to

understand and characterize physical processes by devising simulation models

[40]. Although such models are largely empirical and have generally not found

direct application in clinical medicine , their research role may eventually be

broadened to provide practical decision aids through interfaces with the other

parad igms described in this review.

The major strength of mathematical models is their ability to capture

mathematically sound relationships in a concise and efficient computer program .

However , the major limitation, as with most of the paradigms discussed here, is

that few areas of medicine are amenable to firm, quantitative description .

Because the accuracy of the results depend on correct identification of relevant

parameters , the precision and certainty of the relationships among them, and the

accuracy of the techniques for measuring them, mathematical models have limited

applicabiity at present. Furthermore, those domains that do lend themselves to

mathematical description may still benefit from interactions with symbolic

reasoning techniques, as has been demonstrated in the digitalis therapy adviser

(35] .

5 Statistical Pattern Recognition Techniques

5.1 Overview

Pattern recognition techniques define the mathematical relationship

between measurable features and classifications of objects [15],(51]. In

medicine, the presence or absence of each of several signs and symptoms in a

patient may be definitive for the classification of the patient as “abnormal” or
into the category of a specific disease. They are also used for prognosis (1],

or predicting disease duration, time course, and outcomes. These techniques

have been applied to a variety of medical domains, such as image processing and

signal analysis, in addition to computer—assisted diagnosis.

In order to find the diagnostic pattern, or discriminant function, the

method requires a training set of objects, for which the correct classification

is already known, as well as reliable valuen for their measured features. If

the form and parameters are not known for the statistical ~~stributions

underlying the features, then they must be estimated . Parametric techniques

decision making group during a workshop on artificial intelligence in medicine
at the University of +okyo in November 1978.

-
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focus on learning the parameters of the probability density functions, while

non—parametric (or “distribution—free”) techniques make no assumptions about the

form of the distributions. After training, then, the pattern can be compared to

new, unclassified objects to aid in deciding the category to which the new

object belongs’0.

There are numerous variations on this general approach , most notably in

the mathematical techniques used to extract characteristic measurements (the

features) and to find and refine the pattern classifier during training . For

example, linear regression analysis is a commonly used technique for finding the

coefficients of an equation that defines a recurring pattern or category of

diagnostic or prognostic interest. A class of patients can be described by a

feature vector X — [xj , x2 , ..., x~] (where xi is one of n descriptive

variables). The goal is to produce an equation relating the posterior

probabilities’1 of each diagnostic class to the feature vector through a set of

n coefficients (ai)’2:

P(Dj~X) — a1x1 + a2x2 + ... + anxn

Recent work emphasizes structural relationships among sets of features more than

statistical ones.

Three of the best known training criteria for the discriminant function

are:

(a) least—squared—error criterion: choose the function that minimizes the

squared differences between predicted and observed measurement values;

(b) clustering criterion: choose the function that produces the tightest

clusters;

(c) Bayes’ criterion: choose the function that has the minimum cost associated

with incorrect diagnoses13.

101t is possible to detect patterns, even without a known classification
for objects in the training set, with so—called “unsupervised” learnin
techniques. Also, it is possible to work with both numerical and non—numerica
measurements.

“The posterior probability of a diagnostic class, represented as
P(D4~X) , is the probability that a patient falls in diagnostic category Dj given
thaf the feature vector X has been observed.

‘2See (62] for a study in which the coefficients are reported because of
their medical import.

13This is one of many uses of Bayes’ Theorem, a definitional rule that
relates posterior and prior probabilities . For an overview of its use as a
diagnostic rule (as opposed to a training criterion) and a definition of the
formula , see Sec tion 6.
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Ten commonly used mathematical models based on these criteria have been shown to

produce remarkably similar diagnostic results for the same data [7].

5.2 Example

There are numerous papers on uses of pattern recognition methods in

medicine. Armitage (1] discusses three examples of prognostic studies , with an

emphasis on regression methods. Goidwyn et al. [31] discuss uses of cluster

analysis. One recent diagnostic application by Patrick [73] uses Bayes’

criterion to classify patients having chest pains into three categories: D1:

acute myocard ial infarction (MI); D2: coronary insufficiency ; and D3: non—

cardiac causes of chest pain. The need for early diagnosis of heart attacks

without laboratory tests is a prevalent problem, yet physicians are known to

misclassify about one third of the patients in categories P1 and D2 and about

80% of those in P3. In order to determine the correct classification , each

patient in the training set was classified after 3 days , based on laboratory

data including electrocardiogram (ECG) and blood data (cardiac enzymes). There

remained some uncertainty about several patients with “probable MI.” Seventeen

variables were selected from many: 9 features with continuous values (including

age, heart rates, white blood count, and hemoglobin) and 8 features with

discrete values (sex and 7 ECG features).

The training data were measurements on 247 patients. The decision rule

was chosen using Bayes’ theorem to compute the posterior probabilities of each

diagnostic class given the feature vector X (X — (x1, x2, ... , x1~ ]. Then a

decision rule was chosen to minimize the probability of error by adjusting the

coefficients on the feature vector X such that for the correct class Di:

P(D iIX) — !4AX (P(D1IX), P(D7~X), P(D3IX)] 
-

The class conditional probability density functions must be estimated

initially , and the performance of the decision rule depends on the accuracy of

the assumed model.

Using the same 247 patients for testing the approach, the trained

classifier averaged 80% correct diagnoses over the three classes, using only

data available at the time of admission. Physicians, using more data than the

computer , averaged only 50.5% correct over these three categories for the same

patients. Training the classifier with a subset of the patients , and using the

remainder for testing, produced nearly as good results.

- • ___________ 
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5.3 Discussion of the Methodology

The number of reported medical applications of pattern recognition

techniques is large, but there are also numerous problems associated with the

approach . The most obvious difficulties are choosing the set of features in the

first place, collecting reliable measurements on a large sample, and verifying

the initial classifications among the training data. Current techniques are

inadequate for problems in which trends or movement of features are important

characteristics of the categories. Also the problems for which existing

techniques are accurate are those that are well characterized by a small number

of features (“dimensions of the space”).

As with all techniques based on statistics, the size of the sample used

to define the categories is an important consideration. As the number of

important features and the number of relevant categories increase, the required

size of the training set also increases. In one test (7] , pattern classifiers

trained to discriminate among 20 disease categories from 50 symptoms were

correct 51% — 64% of the time. The same methods were used to train classifiers

to discriminate between 2 of the diseases, from the same 50 symptoms, and

produced correct diagnoses 92% — 98% of the time .
The context in which a local pattern is identified raises problems

related to the issue of utilizing medical knowledge. It is difficul t to find

and use classifiers that are best for a small decision , such as whether an area

of an X—ray is inside or outside the heart , and integrate those into a global

classifier, such as one for abnormal heart volume.

Accurate application of a classifier in a hospital setting also requires

that the measurements in that clinical environment are consistent with the

measurements used to train the classifier initially. For example , if diseases

and symp toms are defined differently in the new setting , or if lab test values

are reported in different ranges, or different lab tests used , then decisions

based on the classification are not reliable.

Pattern recognition techniques are often misapplied in medical domains in

which the assumptions are violated. Some of the difficulties noted above are

avoided in systems that integrate structural knowledge into the numerical

methods and in systems that integrate human and machine capabilities into

single, interactive systems. These modifications will overcome one of the major

difficulties seen in completely automated systems, that of providing the system

with good “intuitions” based on an expert’s a priori knowledge and experience

(51].

- 7  - - ~~~~~~~~~~~ ~~~~~~~~~~~~~ -
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6 Bayesian Statistical Approaches

6.1 Overview
More work has been done on Bayesian approaches to computer—based medical

decision making than on any of the other paradigms we have discussed . The
appeal of Bayes’ Theorem’4 is clear : it potentially offers an exact method for

computing the probability of a disease based on observations and data regacding c

the frequency with which these observations are known to occur for specified

diseases. In several domains the technique has been shown to be exceedingly

accurate , but there are also several limitations to the approach which we

discuss below.

In its simplest formulation , Bayes’ Theorem can be seen as a mechanism to

calculate the probability of a disease , in light of specified evidence, from the

a priori probability of the disease and the conditional probabilities relating

the observations to the diseases in which they may occur . For example, suppose

disease Dj is one of n mutually exclusive diagnoses under consideration and E is

the evidence or observations supporting that diagnosis. Then if P(Dj) is the ~
priori probability of the ith disease 15:

P(D i) P ( E I D i)
P(Di I E )  —

P(Dj) F(I~IUj)

.1”
The theorem can also be represented or derived in a variety of other forms,

including an odds/likelihood ratio formulation. We cannot include a full

discussion here, but any introductory statistics book or Lusted’s volume [64]

presents the subject in considerable detail.

Among the most commonly recognized problems with the utilization of a

Bayesian approach is the large amount of data required to determine all the

conditional probabilities needed in the rigorous application of the formula.

Chart review or computer—based analysis of large databanks occasionally allows

most of the necessary conditional probabilities to be obtained . A variety of

additional assumptions must be made. For example: (1) the diseases under

consideration are assumed mutually exclusive and exhaustive (i.e., the patient

is assumed to have one of the n diseases), (2) the clinical observations are

14also often referred to as Bayes’ rule, discriminant , or criterion
15Here P(D1~E) is the probability of the ith disease given that evidence

E has been observed P(EID{) is the probability That evidence r. will be observed
Tn the setting of d~e ith disease. 
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assumed to be conditionally independent over a given disease’6, and (3) the

incidence of the symptoms of a disease is assumed to be stationary (i.e., the

model does not allow for changes in disease patterns over time).

One of the earliest Bayesian programs wa5 Warner’s system for the

diagnosis of congenital heart disease [115]. He com~~.led data on 83 patients and

generated a symptom—disease matrix consisting of 53 symptoms (attributes) and 35

disease entities. The diagnostic performance of the computer , based on the

presence or absence of the 53 symptoms in a new patient , was then compared to

that of two experienced physicians. The program was shown to reach diagnoses

with an accuracy equal to that of the experts . Furthermore, system performance

was shown to improve as the statistics in the symptom—disease matrix stabilized

with the addition of increasing numbers of patients .

In 1968 Gorry and Barnett pointed out that Warner’s program had required

making all 53 observations for every patient to be diagnosed , a situation which

would not be realistic for many clinical applications . They therefore used a

modification of Bayes ’ Theorem in which observations are cons idered
sequentially ’7. Their computer program analyzed observations one at a time ,

suggested which test would be most useful if performed next , and included

termination criteria so that a diagnosis could be reached , when appropriate ,

without needing to make all the observations (32]. Decisions regarding tests

and termination were made on the basis of calculations of expected costs and

benefits at each step in the logical process’8. Using the same symptom—disease

matrix developed by Warner , they were able to attain equivalent diagnostic

performance using only 6.9 tests on average 19. They pointed out that , because

the costs of medical tests may be significant (in terms of patient discomfort ,

time expended , and financial expense), the use of inefficient testing sequences

should be regarded as ineffective diagnosis. Warner has also more recently

included Gorry and Barnett’s sequential diagnosis approach in an application

regarding structured patient history—taking (118].

16The purest form of Bayes’ Theorem allows conditional dependencies , and
the order in which evidence is obtained , to be explicitly considered in the
analysis. However , the number of required conditional probabilities is so
unwieldy that conditional Independence of observations, and non—dependence on
the order of observations, is generally assumed [108].

17A similar approach was devised in Russia at approximately the same time
by Vishnevskiy and associates. Their analyses, and a summary of the impressive
amount of statistical data they have amassed , are contained in [1113 .

188ee the decision theory discussion in Section 7.
19lests for determining attributes were defined somewhat differently than

they had been by Warner. Thus the maximum number of tests was 31 rather than
the 53 observations used in the original study .
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The med ical computing literature now includes many examples of Bayesian

diagnosis programs , most of which have used the nonsequential approach , in

addition to the necessary assumptions of symptom independence m d  mutual

exclusiveness of disease as discussed above. One particularly successful

research effort has been chosen for discussion .

6.2 Example

Since the late 1960’s deDombal and associates , at the University of Leeds
(England), have been studying the diagnostic process and developing computer—

based decision aids using Bayesian probability theory . Their area of

investigation has been gastrointestinal diseases , originally acute abdominal

pain [123 with more recent analyses of dyspepsia (44) and gastric carcinoma

[1343 .

Their program for  assessment of acute abdominal pain was evaluated in the

emergency room of their a f f i l i a t ed  hosp ital [ 1 2) .  Emergency physicians f i l led

out data sheets summarizing clinical and laboratory f indings on 304 pat ients

presenting with abdominal pain of acute onset. The data from these sheets

became the attributes that were subjected to Bayesian analysis ; the required

condi tional probabilities had been previously compiled from a large group of

patients with one of seven possible diagnoses20. Thus the Bayesian formulation

assumed each patient had one of these diseases and would select the most likely -

on the basis of recorded observations. Diagnostic suggestions were obtained in

batch mode and did not require direct interaction between physician and

computer ; the program could generate results in from 30 seconds to 15 minutes

depending upon the level of system use at the time of analysis [43]. Thus the

computer output could have been made available to the emergency room physician ,

on average, within 5 minutes after the data form was completed and handed to the

technic ian assis ting with the study.

During the study (12], however, these computer—generated diagnoses were

simply saved and later compared to (a) the diagnoses reached by the attending

clinicians, and (b) the ultimate diagnosis verified at surgery or through

appropriate tests. Althougn the clinicians reached the correct diagnosis in

only 65%—80% of the 304 cases (with accuracy depending upon an individual’s

training and experience), the program was correct in 91.8% of cases.

Furthermore , in 6 of the 7 disease categories the computer was proved more

20appendicitis , diverticulitis , perforated ulcer , cholecystitis , small
bowel obstruction , pancreatitis , and non—specific abdominal pain. 
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likely than the senior clinician in charge of a case to assign the patient to

the correct disease category . Of particular interest was the program’s accuracy

regarding appendicitis , a diagnosis which is often made incorrectly. In no

cases of appendicitis did the computer fail to make the correct diagnosis , and

in only six cases were patients with non—specific abdominal pain incorrectly

classified as having appendicitis. Based on the actual clinical decisions ,

however, over 20 patients with non—specific abdominal pain were unnecessarily

taken to surgery for appendicitis , and in six cases patients with appendicitis

were “watched” for over eight hours before they were finally taken to the

operating room.

These investigators also performed a fascinating experiment in which they

compared the program’s performance based on data derived from 600 real patients,

with the accuracy the system achieved using “estimates” of conditional

probabilities obtained from experts [601 21. As discussed above, the program was

significantly more effective than the unaided clinician when real—life data were

used . However, it performed significantly less well than clinicians when expert

estimates were used. The results supported what several other observers have

found , namely that physicians often have very little idea of the “true”

probabilities for symptom—disease relationships.

Another Leeds study of note was an analysis of the effect of the system

on the performance of clinicians (13]. The trial we have mentioned that

involved 304 patients was eventually extended to 552 before termination.

Although the computer’s accuracy remained in the range of 91% throughout this

period , the performance of clinicians was noted to improve markedly over time.

Fewer negative laparotomies were performed , for example, and the number of acute

appendices that perforated (ruptured) also declined . However, these data slowly

returned towards baseline after the study was terminated , suggesting that the

constant awareness of computer monitoring and feedback regarding system

performance had temporarily generated a heightened awareness of intellectual

processes among the hospital’s surgeons.

6.3 Discussion of the Methodology

The ideal matching of the problem of acute abdominal pain and Bayesian

analysis must be emphasized ; the technique cannot necessarily be as effectively

21Such estimates are referred to as “subjective” or “personal”
probabilities , and some investigators have argued that they should be used in
Bayesian systems when formally derived conditional probabilities are not
available (b4].
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applied in other medical domains where the following limitations of the Bayesian

approach may have a greater impact.

(1) The assumption of conditional independence of symptoms usually does not

apply and can lead to substantial errors in certain settings [72). This has

led some investigators to seek new numerical techniques that avoid the

independence assumption (8]. If a pure Bayesian formulation is used

without making the independence assumption, however , the number of required

conditional probabilities becomes prohibitive for complex real world

problems (108).

(2) The assumption of mutual exclusiveness and exhaustiveness of disease

categories is usually false. In actual practice concurrent and overlapping

disease categories are common. In deDombal’s system, for example , many of

the abdominal pain diagnoses missed were outside the seven “recognized”

possibilities ; if a program starts with an assumption that it need only

consider a small number of defined likely diagnoses, it will inevitably miss

the rare or unexpected cases (precisely the ones with which the clinician is

most apt to need assistance).

(3) In many domains it may be inaccurate to assume that relevant conditional

probabilities are stable over time (e.g., the likelihood that a particular

bacterium will be sensitive to a specific antibiotic). Furthermore,

diagnostic categories and definitions are constantly changing, as are

physicians’ observational techniques, thereby invalidating data previously

accumulated22. A similar problem results from variations in ~ priori

probabilities depending upon the population from which a patient is drawn23.

Some observers feel that these are major limitations to the use of Bayesian

techniques (16].

In general, then, a purely Bayesian approach can so constrain problem

formulation as to make a particular application unrealistic and hence

unworkable. Furthermore , even when diagnostic performance is excellent such as

in deDombal’s approach to abdominal pain evaluation , clinical implementation and

system acceptance will generally be difficult. Forms of representation that

allow explanation of system performance in familiar terms (i.e., a more

22Although gradual changes in definitions or observetional techniques may
be statistically detectable by database analysis, a Bayesi’an analysis that uses
such data is inevitably prone to error.

23deDombal has examined such geographic and population—based variations
in prohabilities and has reported early reports of his analysis (14].
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congenial interface with physician users) will heighten clinical acceptance ; it

is at this level that Bayesian statistics and symbolic reasoning techniques may

most beneficially interact.

7 Decision Theoretical Approaches

L

7.1 Overview

Bayes’ Theorem is only one of several techniques used in the larger field

of decision analysis, and there has recently been increasing interest in the

ways in which decision theory might be applied to medicine and adapted for

automation. Several excellent reviews of the field are available in basic

reviews [45], textbooks [84], and medically—oriented journal articles

[67],(94],[109]. In general terms, decision analysis can be seen as any attemp t

to consider values associated with choices , as well as probabilities , in order

to analyze the processes by which decisions are made or should be made .

Schwartz identifies the calculation of “expected value” as central to formal

decision analysis (94]. Ginsberg contrasts medical classification problems

(e.g., diagnosis) with broader decision problems (e.g., “What should I do for

this patient?”), and asserts that most important medical decisions fall in the

latter category and are best approached through decision analysis (29].

The following topics are among the central issues in the field:

(1) Decision Trees. The decision making process can be seen as a sequence of

steps in which the clinician selects a path through a network of plausible

events and actions. Nodes in this tree—shaped network are of two kinds :

decision nodes, where the clinician must choose from a set of actions, and

chance nodes, where the outcome is not directly controlled by the clinician

but is a probabilistic response of the patient to some action taken. For

example , a physician may choose to perform a certain test (decision node)

but the occurrence or nonoccurrence of complications. may be largely a matter

of statistical likelihood (chance node). By analyzing a difficult decision

process before taking any actions, it may be possible to delineate in

advance all pertinent chance and decision nodes, all plausible outcomes,

plus the paths by which these outcomes might be reached . Furthermore , data

may exist to allow specific probabilities to be associated with each chance

node in the tree.
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(2) Expected Values. In actual practice physicians make sequential decisions

based on more than the probabilities associated with the chance node that

follows. For example , the best possible outcome is not necessarily sought

if the costs associated with that “path” far outweigh those along alternate

pathways (e.g., a definitive diagnosis may not be sought if the required

testing procedure is expensive or painful and patient management will be

unaffected ; similarly , some patients prefer to “live with” an inquinal

hernia rather than undergo a surgical repair procedure). Thus, anticipated

“costs” (financial, complications, discomfort , patient preference) can be

associated with the decision nodes. Using the probabilities at chance

nodes , the costs at decision nodes, and the “value” of the various outcomes,

an “expected value” for each pathway through the tree (and in turn each

node) can be calculated. The ideal pathway , then , is the one which

maximizes the expected value.

(3) Eliciting Values. Obtaining from physicians and patients the costs and

values they associate with various tests and outcomes can be a formidable

problem, particularly since formal analysis requires expressing the various

costs in standardized units. One approach has been simply to ask for value

ratings on a hypothetical scale, but it can be difficult to get the

physician or patient to keep the values24 separate from their knowledge of

the probabilities linked to the associated chance nodes. An alternate

approach has been the development of lottery games. Inferences regarding

values can be made by identifying the odds, in a hypothetical lottery , at

which the physician or patient is indifferent regarding taking a course of

action with certain outcome and betting on a course with preferable outcome

but with a finite chance of significant negative costs if the “bet” is lost.

In certain settings this approach may be accepted and provide important

guidelines in decision making (77].

(4) Test Evaluation. Since the tests which lie at decision nodes are central to

clinical decision analysis, it is crucial to know the predictive value of

tests that are available. This leads to consideration of test sensitivity ,

specificity, receiver operator characteristic curves, and sensitivity

analysis. Such issues are discussed by Komaroff in this issue of the

Proceedings (57] and have also been summarized elsewhere in the clinical

literature (683.

24also termed “utilities” in some references; hence the term “utility
theory” (84].
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Many of the major studies of clinical decision analysis have not

specifically involved computer implementations . Schwartz et al. examined the

workup of renal vascular hypertension , developing arguments to show that for

certain kinds of cases a purely qualitative theoretical approach was feasible

and useful (94]. However, they showed that for more complex clinically

challenging cases the decisions could not be adequately sorted out without the

introduction of numerical techniques. Since it was impractical to assume that

clinicians would ever take the time to carry out a detailed quantitative

decision analysis by hand , they pointed out the logical role for the computer in

assisting with such tasks and accordingly developed the system we discuss as an

example below (33].

Other colleagues of Schwartz at Tufts have been similarly active in

applying decision theory to clinical problems. Pauker and Kassirer have

examined applications of formal cost—benefit analysis to therapy selection [74]

and Pauker has also looked at possible applications of the theory to the

management of patients with coronary artery disease [76]. An entire issue of

the New England Journal of Medicine has also been devoted to papers on this

methodology [46].

7.2 Example

Computer implementations of clinical decision analysis have appeared with

increasing frequency since the mid—1960’s-. Perhaps the earliest major work was

that of Ginsberg at Rand Corporation (281, with  more recent systems reported by

Pliskin and Beck (80] and Saf ran et al. (913.

We will briefly describe here the program of Gorry et al., developed for

the management of acute renal failure (33]. Drawing upon Gorry’s experience

with the sequential Bayesian approach previously mentioned (32], the

investigators recognized the need to incorporate some way of balancing the

dangers and discomforts of a procedure against the value of the information to

be gained. They divided their program into two parts: phase I considered only

tests with minimal risk (e.g., history , examination, blood tests) and phase Ii

considered procedures involving more risk and inconvenience. The phase I

program considered 14 of the most common causes of renal failure and used a

sequential test selection process based on Bayes’ Theorem and omitting more

advanced decision theoretical techniques (32]. The conditional probabilities

used were subjective estimates obtained from an expert nephrologist and were

-- ~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~ -. - -

S.,. ~~~~~~~~~~~~ 
- w ,~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~
---

~~~
-

~~~
--

~~~~~~~~ 
- -



7 Decision Theoretical Approaches Page 28

therefore potentially as problematic as those discussed by Leaper et al. (60]

(see Section 6.2). The researchers found that they had no choice but to use

expert estimates, however, since detailed quantitative data were not available

either in databanks or the literature.

It is in the phase II program that the methods of decision theory were

employed because it was in this portion of the decision process that the risks

of procedures became important considerations. At each step in the decision

process this program considers whether it is best to treat the patient

immediately or to first carry out an additional diagnostic test. To make this

decision the program identifies the treatment with the highest current expected

value (in the absence of further testing), and compares this with the expected

values of treatments that could be instituted if another diagnostic test were

performed . Comparison of the expected values are made in light of the risk of

the test in order to determine whether the overall expected value of the test is

greater than that of immediate treatment. The relevant values and probabilities

of outcomes of treatment were obtained as subjective estimates from

nephrologists in the same way that symptom—disease data had been obtained . All

estimates were gradually refined as they gained experience using the program,

however.

The program was evaluated on 18 test cases in which the true diagnosis

was uncertain but two expert nephrologists were willing to make management

decisions. In 14 of the cases the program selected the same therapeutic plan or

diagnostic test as was chosen by the experts. For three of the four remaining

cases the program’s decision was the physicians’ second choice and was, they

felt , a reasonable alternative plan of action. In the last case the physicians

also accepted the program’s decision as reasonable although it was not among

their first two choices.

7.3 Discussion of the Methodology

The excellent performance of Gorry’s program, despite its reliance on

subjective estimates from experts, may serve to emphasize the importance of the

clinical analysis that underlies the decision theoretical approach. The

reasoning steps in managing clinical cases have been dissected in such detail

that small errors in the probability estimates are apparently much less

important than they were for deDoithal’s purely Bayesian approach [60]. Corry

suggests this may be simply because the decisions made by the program are based

V . 
~~~~~~~~~~~~~~~~~~~~ - ~~~~~~~~~~~~~~~~~~~ ~~~~~~ .~~~~~~~

———-
~~~‘—  - -————

~
- — - --~ 

-__- --~~~~



7 Decision Theoretical Approaches Page 29

on the combination of large aggregates of such numbers, but this argument should

apply equally for a Bayesian system. It seems to us more likely that

distillation of the clinical domain in a formal decision tree gives the program

so much more knowledge of the clinical problem that the quantitative details

become somewhat less critical to overall system operation . The explicit

decision network is a powerful knowledge structure ; the “knowledge” in

deDombal’s system lies in conditional probabilities alone and there is no larger

scheme to override the propagation of error as these probabilities are

mathematically manipulated by the Bayesian routines.

The decision theory approach is not without problems, however. Perhaps

the most difficult problem is assigning numerical values (e.g., dollars) to a

human life or a day of health , etc . Some critics feel this is a major

limitation to the methodology (1203 .  Overlapping or coincident diseases are also

not well—managed , unless specifically included in the analysis, and the Bayesian

foundation for many of the calculations still assumes mutually exclusive and

exhaustive disease categories. Problems of symptom conditional dependence still

remain , and there is no easy way to include knowledge regarding the time course

of diseases. Gorry points out that his program was also incapable of

recognizing circumstances in which two or more actions should be carried out

concurrently. Furthermore, decision theory per se does not provide the kind of

focusing mechanisms that clinicians tend to use when they assume an initial

diagnostic hypothesis in dealing with a patient and discard it only if

subsequent data make that hypothesis no longer tenable. Other similar

strategies of clinical reasoning are becomin~ increasingly well—recognized [53]

and accoun t in large part for the applications of symbolic reasoning techniques

to be discussed in the next section.

8 Symbolic Reasoning Approaches

8.1 Overview

In the early 1970’s researchers at several institutions simultaneously

began to investigate potential clinical applications of symbolic reasoning

techniques drawn from the branch of compu~.er science known as artificial

intelligence (Al). The field is well—reviewed in a recent book by Winston (1283.

The term “artificial intelligence” is generally accepted to include those

computer applications that involve symbolic inference rather than strictly
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numerical calculations. Examples include programs that reason about mineral

exploration, organic chemistry , or molecular biology ; programs that converse in

English and understand spoken sentences ; and programs that generate theories

from observations.

Such programs gain their power from qualitative , experiential judgments ,

codified in so—called “rules—of—thumb” or “heuristics”, in contrast  to numerical

calculation programs whose power derives from the analytical equations used .

The heuristics focus the attention of the reasoning program on parts of the

problem that seem most critical and parts of the knowledge base that seem most

relevant. They also guide the application of the domain knowledge to an

individual case by deleting items from consideration as well as focusing on

items. The result is that these programs pursue a line of reasoning as opposed

to following a sequence of steps in a calculation. Among the earliest symbolic

inference programs in medicine was the diagnostic interviewing system of

Kleinmuntz (54]. Other early work included Wortman’s information processing

system, the performance of which was largely motivated by a desire to understand

and simulate the psychological processes of neurologists reaching diagnoses

[130].

It was a landmark paper by Corry in 1973, however, that first critically

analyzed conventional approaches to computer—based clinical decision making and

outlined his motivation for turning to newer symbolic techniques [343. He used

the acute renal failure program discussed in Section 7.2 (33] as an example of

the problems arising when decision analysis is used alone. In particular, he

analyzed some of the cases on which the program had failed but the physicians

considering the cases had performed well. His conclusions from these

observations include the following four points.

(1) Clinical judgment is based less on detailed knowledge of pathophysiology

than it is on gross chunks of knowledge and a good deal of detailed

experience from which rules of thumb are derived .

(2) Clinicians know facts , of course, but their knowledge is also largely

judgmental. The rules they learn allow them to focus attention and generate

hypotheses quickly. Such heuristics permit them to avoid detailed search

through the entire problem space.

(3) Clinicians recognize levels of belief or certainty associated with many of

the rules they use, but they do not routinely quantitate or use these

certainty concepts in any formal statistical manner .

V. 
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(4)  It is easier for experts to state their rules in response to perceived

misconceptions in others than it is for them to generate such decision

criteria a 2!i~2Lt~

In the renal failure program medical knowledge had been embedded in the

structure of the decision tree. This knowledge was never explicit , and

additions to the experts’ judgmental rules had generally required changes to the

tree itself.

Based on observations such as those above, Gorry identified at least

three important problems for investigation:

(1) Medical Concepts. Clinical decision aids had traditionally had no true

“understanding” of medicine . Although explicit decision trees had given the

decision theory programs a greater sense of the pertinent associations ,

medical knowledge and the heuristics for problem solving in the field had

never been explicitly represented nor used. So—called “common sense” was

often clearly lacking when the programs failed , and this was often what most

alienated potential physician users.

(2) Conversational Capabilities. Both for capturing knowledge from

collaborating experts , and for communicating with physician users, Gorry

argued that further research on the development of computer—based linguistic

capabilities was crucial.

(3) Explanation. Diagnostic programs had seldom emphasized an ability to

explain the basis for their decisions in terms understandable to the

physician. System acceptability was therefore inevitably limited ; the

physician would often have no basis for deciding whether to accept the

program’s advice , and might therefore resent what could be perceived as an

attempt to dictate the practice of medicine .

Gorry’s group at MIT and Tufts developed new approaches to examining the renal

failure problem in light of these observations (75].

Due to the limitations of the older techniques , it was perhaps inevitable
that some medical researchers would turn to the At field for new techniques.

Major research areas in At include knowledge representation , heuristic search,

natural language understanding and generation , and models of thought processes

— all topics clearly pertinent to the problems we have been discussing.

Furthermore, At researchers were beginning to look for applications to which

they could apply some of the techniques they had developed in theoretical
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domains. This community of researchers has grown in recent years, and a recent

issue of Artificial Intelligence was devoted entirely to applications of AT to

biology, medicine , and chemistry (1051 25.

Among the programs using symbolic reasoning techniques are several

systems that have been particularly novel and successful. At the University of

Pittsburgh, Pople and Myers have developed a system called INTERNIST that

assists with test selection for the diagnosis of all diseases in internal

medicine [81). This awesome task has been remarkably successful to date, with

the program correctly diagnosing a large percentage of complex cases selected

from clinical pathologic conferences in the major medical journals26. The

program uses a hierarchic disease categorization , an ad hoc scoring system for

quantifying symptom—disease relationships, plus some clever heuristics for

focusing attention , discriminating between competing hypotheses , and diagnosing

concurrent diseases [82]. The system currently has an inadequate human

interface, however, and is not yet implemented for clinical trials.

Weiss, Kulikowski, and Amarel (Rutgers University) and Safir (Mt. Sinai

Hospital, New York City) have developed a model of reasoning regarding disease

processes in the eye, specifically glaucoma [125]. In this specialized

application area it has been possible to map relationships between observations,
pathophysiologic states, and disease categories. The resulting causal

associational network (termed CASNET) forms the basis for a reasoning program

that gives advice regarding disease states in glaucoma patients and generates

management recommendations. The system is undergoing evaluation by a nationwide

network of ophtholomologists but is not yet offered for routine clinical use.

For the Al researchers the question of how best to manage uncertainty in

medical reasoning remains a central issue. The programs mentioned have

developed ad hoc weighting systems and avoided formal statistical approaches .

Others have turned to the work of statisticians and philosophers of science who

have devised theories of approximate or inexact reasoning. For example ,

Wechsler (122] describes a program that is based upon Zadeh’s fuzzy set theory

(1331 , and Shortliffe and Buchanan [101] have turned to confirmation theory for

their model of inexact reasoning.

~~Many of the systems which use Al techniques for medical decision makingwere developed on the SUMEX—AIM computing resource, a nationally shared system
devoted entirely to applications of At to the biomedical sciences. The SUMEX—
AIM computer is physically located at Stanford University but is used by
researchers nationwide via connections to computer networks. The resource is
funded by the Division of Research Resources , Biotechnology Branch, National
Institutes of Health.

26Data communicated by Drs. Pople and Myers at the Fourth Annual A.t.M.
Workshop, Rutgers University, June 1978.
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8.2 Example

The symbolic reasoning program selected for discussion is the MYCIN

System at Stanford University [102]. The researchers cited a variety of design

considerations which motivated the seldction of At techniques for the

consultation system they were developing [99). They primarily wanted it to be

useful to physicians and therefore emphasized the selection of a problem domain

in which physicians had been shown to err frequently, namely the selection of

antibiotics for patients with infections. They also cited human issues that

they felt were crucial to make the system acceptable to physicians :

(1) it should be able to explain its decisions in terms of a line of reasoning

that a physician can understand ;

(2) it should be able to justify its performance by responding to questions

expressed in simple English;

(3) it should be able to “learn” new information rapidly by interacting directly

with experts ;

(4) its knowledge should be easily modifiable so that perceived errors can be

corrected rapidly before they recur in another case; and

(5) the interaction should be engineered with the user in mind (in terms of

prompts , answers, and information volunteered by the system as well as by

the users).

All these design goals were based on the observation that previous computer

decision aids had generally been poorly accepted by physicians , even when they

were shown to perform well on the tasks for which they were designed . MYCIN’s

developers felt that barriers to acceptance were largely conceptual and could be

counteracted in large part if a system were perceived as a clinical tool rather

than a dogmatic replacement for the primary physician’s own reasoning.

Knowledge of infectious diseases is represented in MYCIN as production

rules, each containing a “packet” of knowledge obtained from collaborating

experts [1021 27 . A production rule is simply a conditional statement which

relates observations to associated inferences that may be drawn . For example, a

MYCIN rule might state that “if a bacterium is a gram positive coccus growing in

chains , then it is apt to be a streptococcus.” MYCIN’s power is derived from

such rules in a variety of ways:

“Production rules are a technique frequently employed in Al research
[93 and effectively applied to other scientific problem domains (6].
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(1)  it is the program that  determines which rules to use and how they should be

chained together to make decisions about a specific case28;

(2) the rules can be stored in a machine—readable format but translated into

English for display to physicians ;

(3) by removing , altering , or adding rules, the system’s knowled ge s t ruc tures

can be rapidly modified without explicitly restructuring the entire

knowledge base ; and

(4) the rules themselves can often form a coherent explanation of system

reasoning if the relevant ones are translated into English and displayed in

response to a user’s question.

Associated with all rules and inferences are numerical weights reflecting

the degree of certainty associated with them. These numbers , termed certainty

factors , form the basis for the system’s inexact reasoning [101]. They allow the

judgmental knowledge of experts to be captured in rule form and then used in a

consistent fashion.

The MYCIN System has been evaluated regarding its performance at therapy

selection for patients with either septicemia (1321 ~r meningitis (1311. The

program performs comparably with experts in these two task domains , but as yet

it has no rules regarding the other infectious disease problem areas. Further

knowledge base development will therefore be required before NYCIN is made

available for clinical use; hence questions regarding its acceptability to

physicians cannot yet be assessed . However, the required implementation stages

have been delineated [1001 , attention has been paid to all the design criteria

mentioned above, and the program does have a powerful explanation capability

(95].

8.3 Discussion of the Methodology

Whereas the computations used by the other paradigms mostly invol e

straightforward application of well—developed computing techniques, artificial

intelligence methods are largely experimental; new approaches to knowledge

representation, language understanding , heuristic search, and the other symbolic

reasoning problems we have mentioned are still needed. Thus the At programs

tend to be developed in research environments where short term practical results

are unlikely to be found . However, out of this research are emerging techniques

28The control structure used is termed “goal—oriented” and is similar to
the consequent—theorems used in Hewitt’s PLANNER [42 3 .

‘
~ 11 _ _ _  

‘ , - - , 

- 

-- ---
~~
4. - - 

~~~~~~~~~~
- - -. — -- 

1~



8 Symbolic Reasoning Approaches Page 35

for coping with many of the problems encountered by the other paradigms we have

discussed . At researchers have developed promising methods for handling

concurrent diseases (82],[125], assessing the time course of disease (18], and

acquiring adequate structured knowledge from experts fil l . Furthermore , inexact

reasoning techniques have been developed and implemented (101] (although th~y

tend to be justified largely on intuitive grounds). In addition , the techniquE s

of artificial intelligence provide a way to respond to many of Gorry’s

observations regarding the three major inadequacies of prior parad igms as

described in Section 8.1: (1) the medical At programs all tend to stress the

representation of medical knowledge and a sense of understanding the underlying

concepts ; (2) many of them have conversational capabilities which draw on

language processing research ; and (3) explanation capabilities have been a

primary focus of systems such as MYCIN.

Szolovits and Pauker have recently reviewed some applications of Al to

medicine and have attempted to weigh the successes of this young field against

the very real problems that lie ahead (108]. They identify several deficiencies

of current systems. For example, termination criteria are still poorly

understood . Although INTERNIST can diagnose simultaneous diseases , it also

pursues all abnormal findings to completion , even though a clinician often

ignores minor unexplained abnormalities if the rest of a patient’s clinical

status is well understood. In addition , although some of these programs now

cleverly mimic the reasoning styles observed in experts [17],(53), it is less

clear how to keep the systems from abandoning one hypothesis and turning to

another one as soon as new information suggests another possibility . Programs

that operate this way appear to digress from one topic to another —— a

characteristic that decidedly alienates a user regardless of the validity of the

final diagnosis or advice.

Still largely untapped is the powe r of an At program to understand its

own knowledge base, i.e., the structure and content of the reasoning mechanisms

as well as of the medical facts . In effect , Al programs have the ability to

“know what they know”, the best working example of which can be found in the

prototype system named Teiresias (10). Because such programs can reason about

their own knowledge, they have the power to encode knowledge about strategies ,

e.g., when to use and when to ig~’ore specific items of medical knowledge and

which leads to follow up on. Such “meta—level” knowledge offers a new dimension

to the design of “intelligent assistant” programs which we pred ict will be

exploited in medical decision making systems of the future. 
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9 Conclusions

This review has shown that there are two recurring questions regarding

computer—based clinical decision making:

(1) Performance: How can we design systems that reach better , more reliable

L decisions in a broad range of applications, and

(2) Acceptability: How can we more effectively encourage the use of such systems

by physicians or other intended users?

We shall summarize these points separately by reviewing many of the

issues common to all the paradigms discussed in this paper.

9.1 Performance Issues

Central to assuring a program’s adequate performance is a matching of the

most appropriate technique with the problem domain. We have seen that the

structured logic of clinical algorithms can be effectively applied to triage

functions and other primary care problems , but they would be less naturally

matched with complex tasks such as the diagnosis and management of acute renal

failure. Good statistical data may support an effective Bayesian program in

settings where diagnostic categories are small in number, non—overlapping, and

well—defined , but the inability to use qualitative medical knowledge limits the

effectiveness of the Bayesian approach in more difftcu]t patient management or

diagnostic environments. Similarly, mathematical models may support decision

making in certain well—described fields in which observations are typically

quantified , and related by functional expressions, but in which the knowledge is

typically limited to numerical encoding. These examples, and others,

demonstrate the need for thoughtful consideration of the technique most

appropriate for managing a clinical problem. In general the simplest effective

approach is to be preferred29, but acceptability issues must also be considered

as discussed below.

As researchers have ventured into more complex clinical domains, a number

of difficult problems have tended to degrade the quality of performance of

computer—based decision aids. Significant clinical problems require large

knowledge bases that contain complex interrelationships including time and

291t is also always appropriate to ask whether computer—based approaches
are needed at all for a given decision making task. For all but the most
complex clinical algorithms, for example, the developers have tended to discard
computer programs. Similarly, Schwartz et ci. pointed out that decision
analyses can often be successfully accomplished in a qualitative manner using
paper and pencil (94 1.
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functional dependencies. The knowledge of such domains is inevitably open—ended

and incomplete, so the knowledge base must be easily extensible. Not only does

this require a flexible representation of knowledge, but it encourages the

development of novel techniques for the acquisition and integration of new facts

and judgments . Similarly, the inexactness of medical inference must somehow be

represented and manipulated within effective consultation systems. As we have

discussed , all these performance issues are important knowledge engineering

research problems for which artificial intelligence already offers promising new

methods.

It is also important to consider the extent to which a program’s

“understanding” of its task domain will heighten its performance, particularly

in settings where knowledge of the field tends to be highly judgmental and

poorly quantified. We use the term “understanding” here to refer to a program’s

ability to reason about, as well as reason with, its medical knowledge base.

This implies a substantial amount of judgmental or structural knowledge (in

addition to data) contained within the program. 
- 

Analyses of human clinical

decision making [17] , [53] suggest that as decisions move from simple to complex,

a physician’s reasoning style becomes less algorithmic and more heuristic , with

qualitative judgmental knowledge and the conditions for invoking it coistug

increasingly into play. Furthermore, the performance of complex decision aids

will also be heightened by the representation and utilization of high level

“mete—knowledge” that permits programs to understand their own limitations and

reasoning strategies. In order to design medical computing programs with these

capabilities, the designers themselves will have to become cognizant of

“knowledge engineering” issues. It is especially important that they find

effective ways to match the knowledge structures they use to the complexity of

the tasks their programs are designed to undertake.

9.2 Acceptability Issues

A recurring observation as one reviews the literature of computer—based

medical decision making is that essentially none of the systems has been

effectively used outside of a research environment , even when its performance

has been shown to be excellent! This suggests that it is an error to

concentrate research primarily on methods for improving the computer’s decision

making performance when clinical impact depends on solving other problems of

acceptance as well. There are some data (106] to support the extreme view that

- ~~~~~~~~~~~~~~~~~ ~~~~~ -‘ -
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the biases of medical personnel against computers are so strong that systems

will inevitably be rejected , regardless of performance. However, we are

beginning to see examples of applications in which initial resistance to

automated techniques has gradually been overcome through the incorporation of

adequate system benefits (121].

Perhaps one of the most revealing lessons on this subject is an

observation regarding the system of Mesel et al. [70) described in Section 2.2.

Despite documented physician resistance to clinical algorithms in other settings

[38], the physicians in Mesel’s study accepted the guidance of protocols for the

management of chemotherapy in their cancer patients. It is likely that the key

to acceptance in this instance is the fact that these physicians had previously

had no choice but to refer their patients with cancer to the tertiary care

center in Birmingham where all complex chemotherapy was administered . The

introduction of the protocols permitted these physicians to undertake tasks 
~~~~

~~~~ 
had previously been unable to do. It simultaneously allowed maintenance of

close doctor—patient relationships and helped the patients avoid frequent long

trips to the center. The motivation for the physician to use the system is

clear in this case. It is reminiscent of Rosati’s assertion that physicians

will first welcome computer decision aids when they become aware that colleagues

who are using them have a clear advantage in their practice (87].

A heightened awareness of “human engineering” issues among medical

computing researchers will also make computers more acceptable to physicians by

making the programs easier and more pleasant to use. Fox has recently reviewed

this field tn detail (22]. The issues range from the mechanics of interaction

with the computer (e.g., using display terminals with such features as light

pens , special keyboards, color , and graphics) to the features of the program

that make it appear as a helpful tool rather than a complicating burden. Also

involved , from both the mechanical and global design sides, is the development

of flexible interfaces that tailor the style of the interaction to the needs and

desires of individual physicians.

Mequ~tte attention must also be given to the severe time constraints

perceived by physicians . Ideally they would like programs to take no more time

than they currently spend when accomplishing the same task on their own . Time
and schedule pressures are similarly likely to explain the greater resistance to

automation among interns and residents than among medical students or practicing
physicians in Startsman ’s study ( 106].
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The issue of a program’s “self—knowledge” impacts on the acceptance of

consultation systems in much the same way as it does upon program performance .

Decision makers in general, and physicians in particular , will place more trust

in systems that appear to understand their own limitations and capabilities , and
that know when to admit ignorance of a problem area or inability to support any

conclusion regarding an individual patient. Moreover, physicians will have a

means for checking up on these automated assistants if the programs have an

ability to explain not only the reasoning chain leading to their decisions but

also their problem solving strategies. High—level knowledge, including a sense

of scope and limitations , may thus allow a program to know enough about itself

to prevent its own misuse . Furthermore, since systems that are not easily

modifiable tend not to be accepted , meta—level knowledge about representation

and interconnections within the knowledge base may help overcome the problem of

programs becoming tied too closely to a store of knowledge that is regionally or

temporally specific . It is therefore important to stress that considerations

such as those we have mentioned here may argue in favor of using symbolic

reasoning techniques even when a somewhat less complex approach might have been

ad equate for the decision task i tself .

9.3 Summary

In summary , the t rend towards increased use of knowledge engineering
techniques for clinical decision programs stems from the dual goals of improving
the performance and increasing the acceptance of such systems. Both

acceptability and performance issues must be considered from the outset in a

system’s design because they dictate the choice of methodology as much as the

task domain itself does. As greater experience is gained with these techniques,

and as they become better known thro ughout the medical computing comsunity, it

is likely that we will see increasingly powerful unions between symbolic

reasoning and the alternate paradigms we have discussed. One lesson to be drawn
lies in the recognition that much basic research remains to be done in medical

computing , and that the field is more than the application of established

computing techniques to medical problems.
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